Hydrological Flood Simulation Using a Design Hyetograph Created from Extreme Weather Data of a High-Resolution Atmospheric General Circulation Model

نویسندگان

  • Nobuaki Kimura
  • Akira Tai
  • Hsiao-Ping Wei
  • Yuan-Fong Su
  • Akio Kitoh
چکیده

To understand the characteristics of severe floods under global climate change, we created a design hyetograph for a 100-year return period. This incorporates a modified ranking method using the top 10 extreme rainfall events for present, near-future, and far-future periods. The rainfall data sets were projected with a general circulation model with high spatial and temporal resolution and used with a flood model to simulate the higher discharge peaks for the top 10 events of each term in a local watershed. The conventional-like ranking method, in which only a dimensionless shape is considered for the creation of a design hyetograph for a temporal distribution of rainfall, likely results in overestimates of discharge peaks because, even with a lower peak of rainfall intensity and a smaller amount of cumulative rainfall, the distribution shape is the only the factor for the design hyetograph. However, the modified ranking method, which considers amounts of cumulative rainfalls, provides a discharge peak from the design hyetograph less affected by a smaller cumulative rainfall depth for extreme rainfall. Furthermore, the effects of global climate change indicate that future discharge peaks will increase by up to three times of OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RCP8.5-Based Future Flood Hazard Analysis for the Lower Mekong River Basin

Climatic variations caused by the excessive emission of greenhouse gases are likely to change the patterns of precipitation, runoff processes, and water storage of river basins. Various studies have been conducted based on precipitation outputs of the global scale climatic models under different emission scenarios. However, there is a limitation in regionaland local-scale hydrological analysis ...

متن کامل

Flood risk zoning due to climate change under RCP 8.5 scenario using hydrologic model SWAT in Gis (Azarshahr basin)

In the present time, with the increase of industrial activities and the neglected environmental issues, the effects of climate change have become more evident and poses this phenomenon as a global difficult. Increasing the probability of occurrence of extreme climatic events such as flood and increasing the frequency and intensity of the effects of climate change. The northwest of the country i...

متن کامل

Simulation of rainfall temporal distribution pattern using WRF Model (case study of Parsian dam basin)

During the rainfall, the intensity of precipitation varies. Changes in the amount of precipitation during an event of rainfall are effective in the resulting of flood and its intensity. Knowledge of how rainfall changes over time during rainfall is determined by temporal distribution pattern of rainfall. For this purpose, availability of short-term time scales rainfalls data are important that ...

متن کامل

Study of the models of large-scale atmospheric circulation system model on intesify rainfall in Ardebil plain

Atmospheric circulation is important to determine the surface climate and environment, and affect regional climate and surface features. In this study, to quantify its effect, the classification system, developed by Lamb is applied to obtain circulation information for Ardabil, North West Province in Iran, on a daily basis, and is a method to classify synoptic weather for study area. For that p...

متن کامل

Bivariate Return Period for Design Hyetograph and Relationship with T-Year Design Flood Peak

This study focuses on the return period evaluation for design hyetographs, which is usually estimated by adopting a univariate statistical approach. Joint Return Period (JRP) and copula-based multivariate analysis are used in this work to better define T-year synthetic rainfall patterns which can be used as input for design flood peak estimation by means of hydrological simulation involving rai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014